If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2=-62n+14
We move all terms to the left:
10n^2-(-62n+14)=0
We get rid of parentheses
10n^2+62n-14=0
a = 10; b = 62; c = -14;
Δ = b2-4ac
Δ = 622-4·10·(-14)
Δ = 4404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4404}=\sqrt{4*1101}=\sqrt{4}*\sqrt{1101}=2\sqrt{1101}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{1101}}{2*10}=\frac{-62-2\sqrt{1101}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{1101}}{2*10}=\frac{-62+2\sqrt{1101}}{20} $
| F=2x²+5x-17 | | -11x-0.08+7x=1.6 | | 4x–(3x+11)=-11 | | 4k+-8=-47-9k | | –(2/3)x=–12. | | -6a-6=-6a-a | | -13x-53=7x+97 | | 75−q=38 | | -(-4n-7)+6n=2n+15 | | 0.4(x-4)+0.6x=0 | | -3=-7x+11 | | F=-1=2x²+5x-17 | | -10j=190 | | 9x+50=122 | | x2+14x+21=4x-3 | | 3d+2(4d-3)=3 | | -(-4n-7)=+6n=2n+15 | | 3/4q=20 | | -82+7x=-13x+118 | | -2+3r=2r+-7 | | 924=21u | | 82=(5+3x)2 | | -9=1/3x-3 | | (14x-33)=(10x+45) | | -21x=-42 | | 42+34+x=180 | | 3+3k=3k+1 | | 8x-39=11+6x | | 7x-x+7=-5 | | -3x+32-7×=-2(5x+10) | | u/23=7 | | 2.8(3d–2)=–12.32 |